Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654195

RESUMO

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Assuntos
Interação Gene-Ambiente , Genes de Plantas , Glycine max , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal , Glycine max/genética , Glycine max/fisiologia , Tolerância ao Sal/genética , Locos de Características Quantitativas/genética , Fenótipo
2.
Front Plant Sci ; 13: 1096457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578334

RESUMO

Introduction: Although seed oil content and its fatty acid compositions in soybean were affected by environment, QTN-by-environment (QEIs) and gene-by-environment interactions (GEIs) were rarely reported in genome-wide association studies. Methods: The 3VmrMLM method was used to associate the trait phenotypes, measured in five to seven environments, of 286 soybean accessions with 106,013 SNPs for detecting QTNs and QEIs. Results: Seven oil metabolism genes (GmSACPD-A, GmSACPD-B, GmbZIP123, GmSWEET39, GmFATB1A, GmDGAT2D, and GmDGAT1B) around 598 QTNs and one oil metabolism gene GmFATB2B around 54 QEIs were verified in previous studies; 76 candidate genes and 66 candidate GEIs were predicted to be associated with these traits, in which 5 genes around QEIs were verified in other species to participate in oil metabolism, and had differential expression across environments. These genes were found to be related to soybean seed oil content in haplotype analysis. In addition, most candidate GEIs were co-expressed with drought response genes in co-expression network, and three KEGG pathways which respond to drought were enriched under drought stress rather than control condition; six candidate genes were hub genes in the co-expression networks under drought stress. Discussion: The above results indicated that GEIs, together with drought response genes in co-expression network, may respond to drought, and play important roles in regulating seed oil-related traits together with oil metabolism genes. These results provide important information for genetic basis, molecular mechanisms, and soybean breeding for seed oil-related traits.

3.
Biotechnol Biofuels Bioprod ; 15(1): 92, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36076247

RESUMO

BACKGROUND: The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. RESULTS: In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein-protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite-lipid, 62 trait-metabolite, and 89 trait-lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene-trait or gene-metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)-GmSEI-GmDGAT1a-triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)-GmPHS-D-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)-GmbZIP123-GmHD-ZIPIII-10-miR166s-oil content. CONCLUSIONS: This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research.

4.
Comput Struct Biotechnol J ; 20: 2951-2964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782726

RESUMO

To address domestication and improvement studies of soybean seed size- and oil-related traits, a series of domesticated and improved regions, loci, and candidate genes were identified in 286 soybean accessions using domestication and improvement analyses, genome-wide association studies, quantitative trait locus (QTL) mapping and bulked segregant analyses in this study. As a result, 534 candidate domestication regions (CDRs) and 458 candidate improvement regions (CIRs) were identified in this study and integrated with those in five and three previous studies, respectively, to obtain 952 CDRs and 538 CIRs; 1469 loci for soybean seed size- and oil-related traits were identified in this study and integrated with those in Soybase to obtain 433 QTL clusters. The two results were intersected to obtain 245 domestication and 221 improvement loci for the above traits. Around these trait-related domestication and improvement loci, 7 domestication and 7 improvement genes were found to be truly associated with these traits, and 372 candidate domestication and 87 candidate improvement genes were identified using gene expression, SNP variants in genome, miRNA binding, KEGG pathway, DNA methylation, and haplotype analysis. These genes were used to explain the trait changes in domestication and improvement. As a result, the trait changes can be explained by their frequencies of elite haplotypes, base mutations in coding region, and three factors affecting their expression levels. In addition, 56 domestication and 15 improvement genes may be valuable for future soybean breeding. This study can provide useful gene resources for future soybean breeding and molecular biology research.

5.
Plant Commun ; 3(3): 100319, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35576159

RESUMO

Theoretical and applied studies demonstrate the difficulty of detecting extremely over-dominant and small-effect genes for quantitative traits via bulked segregant analysis (BSA) in an F2 population. To address this issue, we proposed an integrated strategy for mapping various types of quantitative trait loci (QTLs) for quantitative traits via a combination of BSA and whole-genome sequencing. In this strategy, the numbers of read counts of marker alleles in two extreme pools were used to predict the numbers of read counts of marker genotypes. These observed and predicted numbers were used to construct a new statistic, Gw, for detecting quantitative trait genes (QTGs), and the method was named dQTG-seq1. This method was significantly better than existing BSA methods. If the goal was to identify extremely over-dominant and small-effect genes, another reserved DNA/RNA sample from each extreme phenotype F2 plant was sequenced, and the observed numbers of marker alleles and genotypes were used to calculate Gw to detect QTGs; this method was named dQTG-seq2. In simulated and real rice dataset analyses, dQTG-seq2 could identify many more extremely over-dominant and small-effect genes than BSA and QTL mapping methods. dQTG-seq2 may be extended to other heterogeneous mapping populations. The significance threshold of Gw in this study was determined by permutation experiments. In addition, a handbook for the R software dQTG.seq, which is available at https://cran.r-project.org/web/packages/dQTG.seq/index.html, has been provided in the supplemental materials for the users' convenience. This study provides a new strategy for identifying all types of QTLs for quantitative traits in an F2 population.


Assuntos
Oryza , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Genótipo , Oryza/genética , Fenótipo , Locos de Características Quantitativas/genética
6.
Mol Plant ; 15(4): 630-650, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202864

RESUMO

Although genome-wide association studies are widely used to mine genes for quantitative traits, the effects to be estimated are confounded, and the methodologies for detecting interactions are imperfect. To address these issues, the mixed model proposed here first estimates the genotypic effects for AA, Aa, and aa, and the genotypic polygenic background replaces additive and dominance polygenic backgrounds. Then, the estimated genotypic effects are partitioned into additive and dominance effects using a one-way analysis of variance model. This strategy was further expanded to cover QTN-by-environment interactions (QEIs) and QTN-by-QTN interactions (QQIs) using the same mixed-model framework. Thus, a three-variance-component mixed model was integrated with our multi-locus random-SNP-effect mixed linear model (mrMLM) method to establish a new methodological framework, 3VmrMLM, that detects all types of loci and estimates their effects. In Monte Carlo studies, 3VmrMLM correctly detected all types of loci and almost unbiasedly estimated their effects, with high powers and accuracies and a low false positive rate. In re-analyses of 10 traits in 1439 rice hybrids, detection of 269 known genes, 45 known gene-by-environment interactions, and 20 known gene-by-gene interactions strongly validated 3VmrMLM. Further analyses of known genes showed more small (67.49%), minor-allele-frequency (35.52%), and pleiotropic (30.54%) genes, with higher repeatability across datasets (54.36%) and more dominance loci. In addition, a heteroscedasticity mixed model in multiple environments and dimension reduction methods in quite a number of environments were developed to detect QEIs, and variable selection under a polygenic background was proposed for QQI detection. This study provides a new approach for revealing the genetic architecture of quantitative traits.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Estudo de Associação Genômica Ampla/métodos , Genótipo , Herança Multifatorial/genética , Oryza/genética , Fenótipo
7.
J Exp Bot ; 71(22): 6988-7002, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32926130

RESUMO

Seed oil traits in soybean that are of benefit to human nutrition and health have been selected for during crop domestication. However, these domesticated traits have significant differences across various evolutionary types. In this study, we found that the integration of evolutionary population structure (evolutionary types) with genome-wide association studies increased the power of gene detection, and it identified one locus for traits related to seed size and oil content on chromosome 13. This domestication locus, together with another one in a 200-kb region, was confirmed by the GEMMA and EMMAX software. The candidate gene, GmPDAT, had higher expressional levels in high-oil and large-seed accessions than in low-oil and small-seed accessions. Overexpression lines had increased seed size and oil content, whereas RNAi lines had decreased seed size and oil content. The molecular mechanism of GmPDAT was deduced based on results from linkage analysis for triacylglycerols and on histocytological comparisons of transgenic soybean seeds. Our results illustrate a new approach for identifying domestication genes with pleiotropic effects.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Domesticação , Locos de Características Quantitativas/genética , Sementes/genética , Glycine max/genética
8.
Genes (Basel) ; 11(7)2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32604988

RESUMO

100-seed weight (100-SW) in soybeans is a yield component trait and controlled by multiple genes with different effects, but limited information is available for its quantitative trait nucleotides (QTNs) and candidate genes. To better understand the genetic architecture underlying the trait and improve the precision of marker-assisted selection, a total of 43,834 single nucleotide polymorphisms (SNPs) in 250 soybean accessions were used to identify significant QTNs for 100-SW in four environments and their BLUP values using six multi-locus and one single-locus genome-wide association study methods. As a result, a total of 218 significant QTNs were detected using multi-locus methods, whereas eight QTNs were identified by a single-locus method. Among 43 QTNs or QTN clusters identified repeatedly across various environments and/or approaches, all of them exhibited significant trait differences between their corresponding alleles, 33 were found in the genomic region of previously reported QTLs, 10 were identified as new QTNs, and three (qHSW-4-1, qcHSW-7-3, and qcHSW-10-4) were detected in all the four environments. The number of seed weight (SW) increasing alleles for each accession ranged from 8 (18.6%) to 36 (83.72%), and three accessions (Yixingwuhuangdou, Nannong 95C-5, and Yafanzaodou) had more than 35 SW increasing alleles. Among 36 homologous seed-weight genes in Arabidopsis underlying the above 43 stable QTNs, more importantly, Glyma05g34120, GmCRY1, and GmCPK11 had known seed-size/weight-related genes in soybean, and Glyma07g07850, Glyma10g03440, and Glyma10g36070 were candidate genes identified in this study. These results provide useful information for genetic foundation, marker-assisted selection, genomic prediction, and functional genomics of 100-SW.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Glycine max/genética , Polimorfismo de Nucleotídeo Único , Sementes/genética , Genes de Plantas , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sementes/crescimento & desenvolvimento
9.
Plant J ; 103(3): 1103-1124, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32344462

RESUMO

Although the biochemical and genetic basis of lipid metabolism is clear in Arabidopsis, there is limited information concerning the relevant genes in Glycine max (soybean). To address this issue, we constructed three-dimensional genetic networks using six seed oil-related traits, 52 lipid metabolism-related metabolites and 54 294 SNPs in 286 soybean accessions in total. As a result, 284 and 279 candidate genes were found to be significantly associated with seed oil-related traits and metabolites by phenotypic and metabolic genome-wide association studies and multi-omics analyses, respectively. Using minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) analyses, six seed oil-related traits were found to be significantly related to 31 metabolites. Among the above candidate genes, 36 genes were found to be associated with oil synthesis (27 genes), amino acid synthesis (four genes) and the tricarboxylic acid (TCA) cycle (five genes), and four genes (GmFATB1a, GmPDAT, GmPLDα1 and GmDAGAT1) are already known to be related to oil synthesis. Using this information, 133 three-dimensional genetic networks were constructed, 24 of which are known, e.g. pyruvate-GmPDAT-GmFATA2-oil content. Using these networks, GmPDAT, GmAGT and GmACP4 reveal the genetic relationships between pyruvate and the three major nutrients, and GmPDAT, GmZF351 and GmPgs1 reveal the genetic relationships between amino acids and seed oil content. In addition, GmCds1, along with average temperature in July and the rainfall from June to September, influence seed oil content across years. This study provides a new approach for the construction of three-dimensional genetic networks and reveals new information for soybean seed oil improvement and the identification of gene function.


Assuntos
Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Glycine max/genética , Sementes/genética , Óleo de Soja/genética , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Mapas de Interação de Proteínas/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Sementes/metabolismo , Óleo de Soja/metabolismo , Glycine max/metabolismo
10.
Heredity (Edinb) ; 123(5): 579-592, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31152165

RESUMO

Marker segregation distortion is a natural phenomenon. Severely distorted markers are usually excluded in the construction of linkage maps. We investigated the effect of marker segregation distortion on linkage map construction and quantitative trait locus (QTL) mapping. A total of 519 recombinant inbred lines of soybean from orthogonal and reciprocal crosses between LSZZH and NN493-1 were genotyped by specific length amplified fragment markers and seed linoleic acid content was measured in three environments. As a result, twenty linkage groups were constructed with 11,846 markers, including 1513 (12.77%) significantly distorted markers, on 20 chromosomes, and the map length was 2475.86 cM with an average marker-interval of 0.21 cM. The inclusion of distorted markers in the analysis was shown to not only improve the grouping of the markers from the same chromosomes, and the consistency of linkage maps with genome, but also increase genome coverage by markers. Combining genotypic data from both orthogonal and reciprocal crosses decreased the proportion of distorted markers and then improved the quality of linkage maps. Validation of the linkage maps was confirmed by the high collinearity between positions of markers in the soybean reference genome and in linkage maps and by the high consistency of 24 QTL regions in this study compared with the previously reported QTLs and lipid metabolism related genes. Additionally, linkage maps that include distorted markers could add more information to the outputs from QTL mapping. These results provide important information for linkage mapping, gene cloning and marker-assisted selection in soybean.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Genótipo , Glycine max/genética , Característica Quantitativa Herdável
11.
J Proteome Res ; 17(9): 3061-3074, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30091610

RESUMO

Although the legume-rhizobium symbiosis is a most-important biological process, there is a limited knowledge about the protein interaction network between host and symbiont. Using interolog- and domain-based approaches, we constructed an interspecies protein interactome containing 5115 protein-protein interactions between 2291 Glycine max and 290 Bradyrhizobium diazoefficiens USDA 110 proteins. The interactome was further validated by the expression pattern analysis in nodules, gene ontology term semantic similarity, co-expression analysis, and luciferase complementation image assay. In the G. max-B. diazoefficiens interactome, bacterial proteins are mainly ion channel and transporters of carbohydrates and cations, while G. max proteins are mainly involved in the processes of metabolism, signal transduction, and transport. We also identified the top 10 highly interacting proteins (hubs) for each species. Kyoto Encyclopedia of Genes and Genomes pathway analysis for each hub showed that a pair of 14-3-3 proteins (SGF14g and SGF14k) and 5 heat shock proteins in G. max are possibly involved in symbiosis, and 10 hubs in B. diazoefficiens may be important symbiotic effectors. Subnetwork analysis showed that 18 symbiosis-related soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins may play roles in regulating bacterial ion channels, and SGF14g and SGF14k possibly regulate the rhizobium dicarboxylate transport protein DctA. The predicted interactome provide a valuable basis for understanding the molecular mechanism of nodulation in soybean.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Biologia Computacional/métodos , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Expressão Gênica , Ontologia Genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Anotação de Sequência Molecular , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Glycine max/genética , Glycine max/microbiologia , Simbiose/fisiologia
12.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898807

RESUMO

Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 trait-associated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene (). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.


Assuntos
Glycine max/genética , Locos de Características Quantitativas/genética , Sementes/genética , Mapeamento Cromossômico , Domesticação , Perfilação da Expressão Gênica , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA